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Abstract

This appendix includes extensions and supplemental materials for the model, iden-
ti�cation, and estimation discussed in Gayle and Miller (2014). Section A presents a
dynamic hybrid moral hazard (HMH) model and proves that the optimal long-term
contract can be implemented as a sequence of short-term contracts, analogous to the
static HMH contract analyzed in the main text. Section B analyses identi�cation of
the PMH1 model with shrinking contracts. Section C analyses identi�cation in the
PMH2 model. It derives identi�cation and discusses how to use exclusion restrictions
to potentially narrow the identi�ed set. Section D extends identi�cation results to
accommodate unobserved heterogeneity with long panels. Section E gives details on
the empirical implementation of the application presented in the main text. All proofs
are collected in Section F.

A A Dynamic HMH Model

This section develops the notation for a dynamic version of the HMH model, lays out the
feasibility constraints for the optimization problem, and then shows that the optimal contract
mimics the optimal contract for a static model under the parameter transformation given in
the main text.

Assumptions and notation At the beginning of period t, the manager is paid compen-
sation denoted by wt for his work the previous period, denominated in terms of period-t
consumption units. He makes his consumption choice, a positive real number denoted by ct,
and the board proposes a new contract. The board announces how managerial compensation
will be determined as a function of what he will disclose about the �rm�s prospects, denoted
by rt 2 f1; 2g, and its subsequent performance, measured by revenue xt+1, revealed at the
beginning of the next period. We denote this mapping by wrt(x), the subscript t designating
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that the optimal compensation schedule may depend on current economic conditions, such
as a bond prices. Then the manager chooses whether to be engaged by the �rm or to be
engaged outside the �rm, either with another �rm or in retirement. Denote this decision by
the indicator lt0 2 f0; 1g, where lt0 = 1 if the manager chooses to be engaged outside the
�rm and lt0 = 0 if he chooses to be engaged inside the �rm.
If the manager accepts employment with the �rm, lt0 = 0, the prospects of the �rm

are now fully revealed to the manager but partially hidden from the shareholders. There
are two states, and the probability the �rst state occurs is identically and independently
distributed with probability '1 2 (0; 1). For convenience we denote the probability of the
second state occurring by '2 � 1 � '1. We assume that managers privately observe the
true state, st 2 f1; 2g in period t� gaining information that a¤ects the distribution of the
�rm�s next-period revenues� and reports the state rt 2 f1; 2g to the board. If the manager
discloses the second state, meaning rt = 2, then the board can independently con�rm or
refute it; thus, if st = 1, he reports rt = 1. If st = 2, the manager then truthfully declares
or lies about the �rm�s prospects by announcing rt 2 f1; 2g, e¤ectively selecting one of two
schedules, w1t(x) or w2t(x), in that case.
The manager then makes his unobserved labor e¤ort choice, denoted by lstj 2 f0; 1g for

j 2 f1; 2g for period t which may depend on his private information about the state. There
are two possibilities, to diligently pursue the shareholders objectives of value maximization
by working, thus setting lst2 = 1, or to accept employment with the �rm but follow the
objectives he would pursue if he were paid a �xed wage by setting lst1 = 1, called shirking.
Let lst � (lt0; lst1; lst2). Since leaving the �rm, working and shirking are mutually exclusive
activities, lt0 + lst1 + lst2 = 1.
At the beginning of period t+ 1, revenue for the �rm, xt+1, is drawn from a probability

distribution that depends on the true state st in period t and the manager�s action then, lst.
We denote the probability density function for revenue when the manager works diligently
and the state is s by fs(x). Similarly, let fs(x)gs(x) denote the probability density function
for revenue in period t when the manager shirks. Thus, for both states st 2 f1; 2g,Z

xfs(x)gs(x)dx � Es [xgs(x)] < Es[x] �
Z
xfs(x)dx;

the inequality re�ecting the shareholders�preference for diligent work over shirking. Since
fs(x)gs(x) is a density, gs(x) is positive and integrating fs(x)gs(x) with respect to x demon-
strates Es [gs(x)] = 1. As in the text, we assume

lim
x!1

[gs(x)] = 0

for each s 2 f1; 2g. We make similar assumptions about the weighted likelihood ratio of the
second state occurring relative to the �rst given any observed value of excess returns, x 2 R,
by assuming

lim
x!1

['2f2(x)='1f1(x)] � lim
x!1

[h(x)] = sup
x2R
[h(x)] � h <1: (A-1)

The manager�s wealth is endogenously determined by his consumption and compensation.
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We assume a complete set of markets for all publicly disclosed events e¤ectively attributes
all deviations from the law of one price to the particular market imperfections under consid-
eration. Let bt denote the price of a bond that pays a unit of consumption each period from
period t onwards, relative to the price of a unit of consumption in period t; to simplify the
exposition, we assume bt+1 is known at period t. Preferences over consumption and work
are parameterized by a utility function exhibiting absolute risk aversion that is additively
separable over periods and multiplicatively separable with respect to consumption and work
activity within periods. In the model we estimate, lifetime utility can be expressed as

�
1X
t=0

JX
j=0

�te�jltj exp (�e
ct) ; (A-2)

where � is the constant subjective discount factor, e
 is the constant absolute level of risk
aversion, and e�j is a utility parameter that measures the distaste from working at level
j 2 f0; 1; 2g. As in the main text, we assume e�2 > e�1 and normalize e�0 = 1.
Feasibility constraints The cornerstone of the constraint formulation that circumscribes
the minimization problem shareholders solve is the indirect utility function for a manager
choosing between immediate retirement and retirement one period hence. Lemma A.1 states
this indirect utility function in terms of the utility received from retiring immediately. To
state the lemma, let rt(s) denote the manager�s disclosure rule about the state when the true
state is s 2 f1; 2g.

Lemma A.1 If the manager, o¤ered a contract of wrt(x) for announcing r, retires in period
t or t+ 1 by setting (1� lt0) (1� lt+1;0) = 0, upon observing the state s and reporting rt(s),
he optimally chooses lst � (lt0; lst1; lst2) to minimize

2X
s=1

's

(�
lst1e�1 + lst2e�2

�1=(bt�1)
+ Es

�
exp

�
�
e
wrt(s);t(x)

bt+1

�
[gs(x)lt1 + lt2]

�)
: (A-3)

Had he truthfully disclosed the true state st in period t, the manager would actually
receive wst(x) as compensation if revenue x is realized at the end of the next period, t + 1.
Suppressing for expositional convenience the bond price bt+1, and recalling our assumption
that bt+1 is known at period t, we now let vst(x) measure how (the negative of) utility is
scaled up by wst(x):

vst(x) � exp
�
�e
wst(x)

bt+1

�
: (A-4)

To induce an honest, diligent manager to participate, his expected utility from employment
must exceed the utility he would obtain from retirement. Setting (lt2; rt) = (1; st) in (A-3)
and substituting in vst(x), the participation constraint is, thus"

2X
s=1

Z 1

x

'svst(x)fs(x)dx

#
� E [vst(x)] � e��1=(bt�1)2 : (A-5)
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Given his decision to stay with the �rm one more period, and to truthfully reveal the state,
the incentive-compatibility constraint induces the manager to prefer working diligently to
shirking. Substituting the de�nition of vst(x) into (A-3) and comparing the expected utility
obtained from setting lt1 = 1 with the expected utility obtained from setting lt2 = 1 for any
given state, we obtain the incentive-compatibility constraint for diligence:

0 �
Z 1

x

�
gs(x)� (e�2=e�1)1=(bt�1)� vst(x)fs(x)dx � Es

h�
gs(x)� (e�2=e�1)1=(bt�1)�vst(x)i; (A-6)

for s 2 f1; 2g.
In the HMH model, information hidden from shareholders further restricts the set of

contracts that can be implemented. Comparing the expected value from lying about the
second state and working diligently with the expected utility from reporting honestly in the
second state and working diligently, we obtain the truth-telling constraint:

0 �
Z
[v1t(x)� v2t(x)] f2(x)dx � E2 [v1t(x)� v2t(x)] : (A-7)

An optimal contract also induces the manager not to understate and shirk in the second
state, behavior we describe as sincere. Comparing the manager�s expected utility from lying
and shirking with the utility from reporting honestly and working diligently, the sincerity
condition reduces to

0 �
Z h
(e�1=e�2) 1

bt�1 v1t(x)g2(x)� v2t(x)
i
f2(x)dx � E2

h
(e�1=e�2) 1

bt�1 v1tg2(x)� v2t(x)
i
; (A-8)

where (e�1=e�2)1=(bt�1) v1t(x) is proportional to the utility obtained from shirking and an-
nouncing the �rst state, and f2(x)g2(x) is the probability density function associated with
shirking when the second state occurs.

Optimal contracting We �rst prove that the short-term optimal contract for the dynamic
model has a static analogue of the form we describe in the main text. We then show that
the long-term contract decomposes to a sequence of short-term contracts. As in the static
model, deriving wst(x) to minimize the expected compensation for inducing diligent work in
both states subject to the �ve constraints is equivalent to choosing vst(x) to maximize

2X
s=1

Z 1

x

's ln [vst(x)] fs(x)dx � E [ln vst(x)] (A-9)

subject to the same �ve constraints. To achieve diligent work and truth telling, shareholders
maximize
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2X
s=1

'�

Z n
log [vst(x)] + �0t

h
1� e�1=(bt�1)2 vst(x)

io
fs(x)dx

+

2X
s=1

's�st

Z
vst(x)

he�1=(bt�1)1 gs(x)� e�1=(bt�1)2

i
fs(x)dx+ '2�3t

Z
[v1t(x)� v2t(x)] f2(x)dx

+ '2�4t

Z he�1=(bt�1)1 v1t(x)g2(x)� e�1=(bt�1)2 v2t(x)
i
f2(x)dx (A-10)

with respect to vst(x), where �0t through �4t are the shadow values assigned to the linear
constraints. Setting

�1 = e�1=(bt�1)1 �2 = e�1=(bt�1)2 
 = e
=bt+1 (A-11)

establishes by inspection that the solution to the static model solves the transformed problem
as claimed in the text.
In this framework, there are no gains from a long-term arrangement between shareholders

and the manager. Lemma A.2 veri�es that Fudenberg, Holmstrom and Milgrom�s (1990)
assumptions are met, thus establishing that the long-term optimal contact decentralizes to
a sequence of short-term contracts solved by the problem above.1

Lemma A.2 Denote by � the manager�s date of retirement. The optimal long-term contract
can be implemented by a � -period replication of the optimal short-term contract.

B Identi�cation in the PMH1 Model when Shirking
Contracts are o¤ered in Equilibrium

We now turn to the other two cases of possible e¤ort choice by the principal not analyzed
in the main text; when it is optimal for managers to shirk and when it is optimal for
one type of principal to induce working and another type to induce shirking. In the case
of shirking, Equation (11) in the main text holds, a �xed compensation is prescribed, so
compensation does not depend on revenue. In this case the density f(x)g(x) can be identi�ed
from observations on revenue, the compensation is constant at w(1), but nothing more can
be gleaned from the data about the structure of the model. Loosely speaking, this variation
on the model is under-identi�ed, and is indistinguishable from a model where there are no
moral-hazard considerations.
Now consider the �nal case, and suppose there exists some unobserved heterogeneity in

the types of principals; some of them are just as we have described above and satisfy (10) in
the main text, but the revenue generation process for the remainder is f(x)g(x) regardless

1Malcomson and Spinnewyn (1988), Fudenberg, Holmstrom and Milgrom (1990), and Rey and Salanie
(1990) have independently established conditions under which long-term optimal contracts can be imple-
mented via a sequence of one-period contracts in dynamic models of generalized moral hazard, and the proof
of Lemma A.2 draws extensively upon their results.
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of whether the agent works or shirks. In equilibrium, the latter pay a �xed wage of w(1), and
the former pay variable compensation of (8) in the main text. There is a discontinuity in
the distribution function for compensation data at w(1), and the size of the jump determines
the fraction of principals who induce shirking. The density f(x) is identi�ed from data on
revenues to principals not paying w(1), and f(x)g(x) is identi�ed from data on revenues to
principals paying w(1). Taking the quotient identi�es g(x). This only leaves �1, �2 and 

to identify. In the optimal contract, the participation constraint for both types of principals
holds with equality, as does the incentive-compatibility constraint for the principal who
induces work. Thus (5), (6) and (7) in the main text reduce to

�1E
�
e�
w

o(x)g(x)
�
= �1e

�
w(1) = �2E
�
e�
w

o(x)
�
= 1: (A-12)

De�ne  (�) � E
n
e��[w

o(x)�w(1)]g(x)
o
. The �rst two equalities in (A-12) imply  (
) = 1.

By inspection,  (0) = 1,  0(0) < 0 and  00(�) > 0.2 Thus,  (�) is a convex function with
a unique nonzero solution at  (
) = 1. This equality identi�es 
. Substituting the solution
into the second two equalities of (A-12) identi�es �1 and �2. Therefore, all the parameters
are identi�ed from the cost-minimization equations alone. Indeed this variant on the model
is over-identi�ed, because wo(x) must satisfy (8) and (9) in the main text for each x, a very
strong exclusion restriction that relates the two types of principals to each other. However,
relaxing the restriction would necessitate a separate analysis of the �rst two cases.

C Identifying the PMH2 Model

When there is heterogeneity in the revenue probability distribution, additional restrictions on
the set of observationally equivalent parameters can be imposed if preferences are invariant
across states. Suppose there are two states denoted by s 2 f1; 2g. We denote the revenue
probability density function from working diligently in state s by fs(x), and similarly express
the corresponding likelihood ratio in s as gs(x). We assume f1(x) 6= f2(x) and g1(x) 6= g2(x).
The optimal contract� state dependent, but solved the same way as the one state model� is
denoted by wos(x). We also write ws for the limiting constant wage as x!1 in state s. If
the heterogeneity is observed, the data records the state sn 2 f1; 2g, revenue xn 2 R and
compensation wn 2 R for each observation n 2 f1; : : : ; Ng.
Suppose the agent�s risk-aversion parameter does not vary across states because, for

example, the same type of agent works in both states. The solution to the cost-minimization
problem of inducing diligence, now denoted by wos(x) to re�ect the state dependence, is
derived the same way as in Equation (8) in the main text. For each state s 2 f1; 2g, we de�ne
Qs(
) analogously to Q0(
) by substituting wos(x) and ws for w

o(x) and w, respectively, and
by substituting Es[�] for E[�] in Equation (25) in the main text to condition the expectations
operator on the state.3 Following the same reasoning as the derivation of Equation (25) in the
main text, Qs (
�) � 0 for s 2 f1; 2g. More generally, increasing the states while maintaining

2To prove  0(0) < 0, �rst note that  0(0) = w(1)�E [wo(x)g(x)]. Second, w(1) is the certainty equivalent
of wo(x) under the probability density f(x)g(x). Hence w(1) < E [wo(x)g(x)].

3We adopt the notation that Es[�] � E[�js] throughout.
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the hypothesis that the risk-aversion parameter is invariant across states increases the number
of inequalities from pro�t maximization by the same number.
Now suppose that, in addition, the nonpecuniary bene�ts from working diligently, �2,

do not vary by state. Although there might only be one participation constraint ensuring
that the agent�s unconditional expected utility is at least as enticing as the outside alterna-
tive, it is straightforward to show that the participation constraint in Equation (6) in the
main text holds with equality for each state s 2 f1; 2g in the optimal contract, implying
�2Es

�
e�
w

o
s(x)
�
= 1. De�ning

�2(
) � E1
�
e�
w

o
1(x)
�
� E2

�
e�
w

o
2(x)
�
; (A-13)

it follows that �2 (
�) = 0.4 Intuitively, a person�s risk preferences cannot be identi�ed from
playing a single lottery if there are unobserved components to the reward from entering the
lottery. When o¤ered the chance to play two lotteries with di¤erent risk characteristics but
the same unobserved nonpecuniary components, his risk preferences are partially revealed by
the pecuniary compensating di¤erential between them, which equalizes his expected utility
from playing one versus the other.
Another potential restriction is that the nonpecuniary bene�ts from shirking, �1, do not

vary by state. Since the incentive-compatibility constraint in Equation (7) in the main text
also holds with equality in each state, Theorem 2.1 in the main text implies

��11 =
1� E1

�
e
w

o
1(x)�
w1

�
E1
�
e�
w

o
1(x)
�
� e�
w1

=
1� E2

�
e
w

o
2(x)�
w2

�
E2
�
e�
w

o
2(x)
�
� e�
w2

: (A-14)

In this case, the restriction is based on two hypothetical lotteries, compensation from shirking
in the di¤erent states. To incorporate these restrictions into the testing and estimation
framework, we de�ne

�1(
) �
1� E1

�
e
w

o
1(x)�
w1

�
E1
�
e�
w

o
1(x)
�
� e�
w1

�
1� E2

�
e
w

o
2(x)�
w2

�
E2
�
e�
w

o
2(x)
�
� e�
w2

: (A-15)

From (A-13) and (A-14), Theorem 2.1 in the main text implies �1 (
�) = 0 if �1 does not
vary across states. A joint test of these restrictions can be based on the criterion function,

min f0; Q1(
)g2 +min f0; Q2(
)g2 +�1(
)2 +�2(
)2;

which attains a minimum of zero when all risk-aversion parameter values are observationally
equivalent to 
�.
To summarize, we provide an intuitive explanation of how the extension of the PMH1

model to two states PMH2 model a¤ects identi�cation. Consider as a baseline a framework
with maximal heterogeneity, where the taste parameters for working and shirking, as well as
the risk parameter, vary by state. With maximal heterogeneity, we obtain just two inequal-
ities from the pro�t-maximization condition. The two risk parameter sets are separately
determined state by state. If a single risk parameter satis�es both pro�t inequalities, then it

4If the equation were linear in 
, point identi�cation could be easily determined, but it is not guaranteed.
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must belong to the intersection of the individually determined sets. In this way, we can derive
the set of risk parameters that are common across states, without imposing homogeneity on
the other preference parameters. To impose homogeneity on the taste parameter for work
as well, we would extract from the intersection derived above those risk parameters that
induced the same taste parameter for work in both states. Alternatively, imagine permitting
heterogeneity in the risk parameter across states, but imposing instead homogeneity on the
taste parameter for work. We would seek to equalize the taste parameter for work across
states using two di¤erent risk parameters that individually satisfy the pro�t inequalities for
their respective states.

D Identi�cation with Unobserved Heterogeneity

To illustrate how our identi�cation results can accommodate unobserved heterogeneity we
discuss how the results in the PMH1 model would change if the risk aversion parameter, 
n,
is agent speci�c and time invariant for agents labelled as n = 1; :::; N . Since the changes to
the HMH are similar, we do not explicitly discuss them in this supplementary appendix. We
consider the following econometric model:

ewnt = w(xnt; 
) + "nt t = 1; :::; T (A-16)

where ewnt and xnt are observed compensation and revenue, (
n; "nt) denote unobservables,
respectively time invariant and time varying, and 
n is countable. As in Section 2.2 of
the main text "nt is measurement error which is independent of all variables of interest
including xt, and 
, with E["tjxt; 
] = 0. As in the main text upper case notation is used
to represent a random variable or vector and lower case notation is used for realizations.
In some applications it would be reasonable to also assume that �1, �2, f(x), and g(x) are
functions of n; we �rst assume here that they are not functions of n, and then brie�y remark
on how this assumption might be relaxed.
The econometric model is linked to the theoretical model by assuming that if the principal

demands the agent work, then:

w(xnt; 
n) = 
�1n [ln�2 + lnf1 + �[(�2=�1)� g(xnt)]g] (A-17)

where � is the unique positive solution toZ �
g(x)� (�2=�1)

�2 + �[(�2=�1)� g(x)]

�
f(x)dx = 0: (A-18)

On the other hand, if the principal demands shirking:

w(xnt
n) = 
�1n ln�1: (A-19)

We consider the function w(x; 
n) observed if observables are su¢ cient to calculate the
following conditional expectation:

wn(x) � w(x; 
n) = En[ ewntjXnt = x] (A-20)
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where En[�j�] denotes the expectation operator over x for a given manager n.
Our identi�cation results in this section critically depend on environments in which En[�j�]

exist and can be consistently estimated from the distribution of observables. Su¢ cient
conditions for the existence and consistent estimation of En[�j�] are N �xed and T large or
T large relative to N ; here we assume the former. Thus we assume that the equilibrium
distribution of (W;X) is identi�ed, where W and X are N � 1 dimensional random vectors.
The identi�cation problem reduces to whether the structure [F;G;A1; A2; f�ngNn=1] can be
recovered from knowledge of distribution (W;X).
Suppose 
n is known, and de�ne the mappings g(x; 
n), �1(
n), and �2(
n) as:

g(x; 
n) �
e
nwn � e
nwn(x)

e
nwn � E [e
nwn(x)]
(A-21)

�1(
n) �
1� E

�
e
nwn(x)�
nwn

�
E [e�
nwn(x)]� e�
nwn

(A-22)

�2(
n) �
�
E
�
e�
nwn(x)

�	�1
: (A-23)

As in Theorem 2.1 in the main text we can prove that if 
n is known, then g(x), �1, and
�2 are identi�ed from the distribution of (W;X). We now turn to the identi�cation of

n. In contrast to the PMH1 model in the main text, identi�cation may be achieved from
the cost minimization conditions alone, that is if �1, �2 and g(x) are not agent speci�c.
Thus the equality of �1(
n), �2(
n), and g(x; 
n) across agents yield 3(N � 1) restrictions
for identifying N + 1 parameters. The risk aversion parameters still might not be point
identi�ed because the restrictions are nonlinear, not necessarily invertible in 
n.
Finally the pro�t maximization condition used in the text potentially adds another N

inequality restrictions. Hence even if �1, �2, and g(x) are agent speci�c, there would still be
N inequalities left after using up the restrictions derived from (A-21), (A-22) and (A-23) to
identify the remaining N parameters, 
n.

E Implementation

This appendix extends the discussion of Section 5.2 on estimating and testing the PMH3
model to the dynamic PMH2, PMH3 and HMH models we analyzed in our empirical appli-
cation. First, we show that the set of admissible e
 shrinks when we impose the restrictions
that tastes for working or shirking do not change with the state, and only vary with the
bond price. Then we characterize the set of restrictions on e
 implied by the fully restricted
HMH model as de�ned in the main text.

E.1 Restrictions in the Dynamic PMH model

In the PMH3 model, it follows from Section 5.2 that:

e�3 = fe
 > 0 : Q3(e
) = 0g;

9



where

Q3 (e
) � TX
t=1

2X
s=1

min f0; Qst (e
)g2 : (A-24)

With reference to equations (58) and (59) in the main text, we now de�ne the taste para-
meters for the dynamic version of the pure moral hazard model as

�1st (e
) � �1 (e
=bt+1)bt�1
�2st (e
) � �2 (e
=bt+1)bt�1 :

We investigated how the con�dence region for e
 shrinks when we impose the restrictions
that �1st (e
) and �2st (e
) do not change with the state s 2 f1; 2g or with time t 2 f1; : : : ; Tg.
To impose the restriction that �1st (e
) does not vary by state, we de�ne the real valued

functions �1t (e
) as
�1t (e
) �

8<: 1� E1t

h
exp

�e
(w1t�w)
bt+1

�i
E1t

h
exp

�
�e
w1t
bt+1

�i
� exp

�
�e
w
bt+1

�
9=;
bt�1

�

8<: 1� E21

h
exp

�e
(w2t�w)
bt

�i
E2t

h
exp

�
�e
w2t
bt

�i
� exp

�
�e
w
bt

�
9=;
b1�1

and note that �1t (e
) = 0 if and only if �11t (e
) = �12t (e
). Similarly, �21t (e
) = �22t (e
) if
and only if �2t (e
) = 0 where

�2t (e
) � �E2 �exp��e
w2t
bt+1

���1�bt
�
�
E1

�
exp

�
�e
w1t
bt

���1�bt
:

Thus, to �nd a con�dence region for the risk parameter under the null hypothesis that tastes
for shirking or working, �jst (e
) for j 2 f1; 2g, do not vary by state, we augment (A-24) and
�nd those values of e
 that achieve close to the lower bound of zero for a sample analog of

TX
t=1

2X
s=1

�
min f0; Qst (e
)g2 +�jt (e
)2� : (A-25)

The results from separately imposing these two sets of restrictions for are reported in Table
6 of the main text.
Essentially the same procedure can be used to constrain e�1st or e�2st to remain constant

over time. De�ning

�1st (e
) �
8<: 1� Est

h
exp

�e
(wst�w)
bt+1

�i
Est

h
exp

�
�e
wst
bt+1

�i
� exp

�
�e
w
bt+1

�
9=;
bt�1

�

8<: 1� Es1

h
exp

�e
(ws1�w)
b2

�i
Es1

h
exp

�
�e
ws1
b2

�i
� exp

�
�e
w
b2

�
9=;
b1�1

;

it immediately follows that e�1s1 = e�1st when �1st (e
) = 0. Similarly, e�2s1 = e�2st when
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�2st (e
) = 0, where �2st (e
) is de�ned as
�2st (e
) � �Es �exp��e
wst

bt+1

���1�bt
�
�
Es

�
exp

�
�e
ws1
b2

���1�b1
:

This restriction implies that �2st (e
) = 0 for all t 2 f1; 2; : : : ; Tg and s 2 f1; 2g. Thus, the
con�dence region for the risk parameter under the null hypothesis that �jst (e
) does not vary
over time could be found by constructing a sample analogue of

Q2 (e
) = TX
t=1

2X
s=1

�
min f0; Qst (e
)g2 +�jst (e
)2� (A-26)

and, using the methods we describe below, selecting those e
 that bring the criterion function
close to zero. Formally the identi�ed set for e
 is now given by:

e�2 = fe
 > 0 : Q2(e
) = 0g: (A-27)

E.2 Restrictions in the Dynamic HMH model

The restrictions in the HMH model are imposed similarly. Throughout our analysis of
the HMH model, we maintain the null hypothesis that the taste parameters for working and
shirking, both mappings of e
, do not vary by state or time. These restrictions are maintained
because the intersection of the estimated con�dence intervals for e
 for the 24 sectors under
the null hypothesis is not empty.
To develop the notation for the econometric framework that accommodates a panel where

bonds prices vary over time, as opposed to varying across sections or a steady state economy
with constant interest rates, we extend our notation as follows. Similar to the dynamic PMH
model we de�ne taste parameters that are independent of the state

b�1t (e
) � b�1 (e
=bt+1)bt�1b�2t (e
) � b�2 (e
=bt+1)bt�1 :
Similarly, the likelihood ratio for the second state is de�ned as

bg2t (x; e
) � bg2 (x; e
=bt+1) :
We then de�ne the Lagrange multipliers �1t (e
) through �4t (e
) by substituting e
=bt+1 for 
,b�1t(
) for b�1(
), b�2t(
) for b�2(
) and bg2t(x; 
) for bg2(x; 
); hence, de�ning

bg1t(x; 
) � bg2t (x; 
=bt+1) :
We are now in a position to de�ne �Ht by substituting �1t (e
) through �4t (e
) for �1 (e
)
through �4 (e
), �it (e
) for �i (e
), and 	kt (e
) for 	k (e
) in the de�nition of �H and replacing

 with e
. To impose the restriction that none of the parameters vary over time, we take the

11



intersection

�H(T ) �
T\
t=1

�Ht

= fe
 > 0 : QH (e
) = 0g; (A-28)

where

QH (e
) � TX
t=1

9X
j=5

min [0;	jt (e
)]2 + TX
t=1

7X
j=6

[	5t (e
)	jt (e
)]2
+

TX
t=1

	4t (e
)2 + TX
t=1

[	6t (e
)	8t (e
)]2 + TX
t=1

5X
k=3

min [0;�kt (e
)]2 : (A-29)

Computing �2t (e
) and �3t (e
) requires us to solve forw(1;0)s (x; e
=bt+1) andw(0;1)s (x; e
=bt+1)
for each candidate value of e
, a nonlinear problem that includes two Lagrange multipliers.
If the states s 2 f1; 2g and the e¤ort level (l1; l2) were observed by shareholders, then they
would optimally o¤er bt+1 log [b�1t (e
)] = (bt � 1) e
 for shirking and bt+1 log [b�2t (e
)] = (bt � 1) e

for diligence. The pro�ts from this hypothetical arrangement are, therefore,

�02t (e
) = '1 fE[x]� bt+1 log [b�2t (e
)] = (bt � 1) e
g
+ '2E2 fxbg2t (x; e
)� bt+1 log [b�1t (e
)] = (bt � 1) e
g ;

from shirking in the second state and working diligently in the �rst, and

�03t (e
) = '2 fE[x]� bt+1 log [b�2t (e
)] = (bt � 1) e
g
+ '1E1 [xbg1t (x; e
)� bt+1 log [b�1t (e
)] = (bt � 1) e
] ;

from shirking in the �rst state and working diligently in the second. Since neither cost-
minimization problem imposes the truth telling, sincerity or incentive-compatibility con-
straint, but they have the same objective function, it now follows that �02t (e
) � �2t (e
) and
�03t (e
) � �3t (e
). Let �H (e
; T=�2t;�3t) denote the set of e
 formed from excluding �2t (e
)
and �3t (e
) for all t. By construction,

�H (e
; T ) � �H (e
; T=�2t;�3t) :
Now let �H (e
; T=�2t;�3t�02t;�03t) denote the set of e
 formed from intersecting �H (e
; T=�2t;�3t)
with �02t (e
) and �03t (e
) for all t 2 f1; 2; : : : ; Tg. Since �02t (e
) � �2t (e
) and �03t (e
) � �3t (e
),
it immediately follows that

�H (e
; T=�2t;�3t�02t;�03t) � �H (e
; T ) :
Thus,

�H (e
; T=�2t;�3t�02t;�03t) � �H (e
; T ) � �H (e
; T=�2t;�3t) : (A-30)
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In our empirical application, we found that the con�dence region for e
 obtained from
imposing �H (e
; T=�2t;�3t) coincided with the con�dence region obtained from imposing
�H(e
; T=�2t;�3t;�02t;�03t). In other words, imposing the restrictions �02t (e
) and �03t (e
) for
all t 2 f1; 2; : : : ; Tg did not shrink �H (e
; T=�2t;�3t), implying from (A-30) that

�H (e
; T=�2t;�3t�02t;�03t) = �H (e
; T ) = �H (e
; T=�2t;�3t) :
In this way, we computed the con�dence region, �H (e
; T ), without solving forw(1;0)s (x; e
=bt+1)
or w(0;1)s (x; e
=bt+1).
E.3 Measurement Error

Abnormal returns to the �rm are de�ned as the residual component of returns that cannot
be priced by aggregate factors the manager does not control. More speci�cally, let Vnt denote
the equity value of �rm n at time t on the stock market, and let exnt, net abnormal returns,
de�ned as the �nancial return on its stock net of the �nancial return on the market portfolio
in period t. Gross abnormal returns for the nth �rm in period t attributable to the manager�s
actions are de�ned as net abnormal returns plus compensation as a ratio of �rm equity:

xnt � exnt + wnt
Vn;t�1

: (A-31)

In an optimal contract, compensation depends on xnt, not exnt. If wnt were observed without
error, then we could deduce xnt directly from (exnt ; wnt; Vn;t�1) and apply the estimator to
obtain wnt for each znt. In that case, ignoring dynamic concerns, we could compute the test
statistics described in Section 5.2 of the main text.
However the series we construct on executive compensation, wnt, is assumed to be mea-

sured with error, rendering the estimator described in Section 5.2 inconsistent. Measured
compensation, denoted ewnt, is the sum of true compensation wnt plus an independently
distributed disturbance term "t, assumed orthogonal to the other variables of interest:

ewnt = wnt + "nt: (A-32)

Although ( ewnt; exnt) rather than (wnt; xnt) is observed for each (n; t), we can nevertheless
construct consistent estimates of (wnt; xnt) from ( ewnt; exnt) by exploiting a premise of the
model that the manager is risk averse under a mild regularity condition, that net abnormal
returns to shareholders increase with gross abnormal returns; in other words, the manager
does not appropriate all the increase in the �rm value.

Theorem E.1 For all (x1; x2) 2 R2

wnt = Et[ ewntjexnt ; rnt; Vn;t�1] (A-33)

This theorem implies that the compensation schedule is the conditional expectation
of measured compensation given net abnormal returns and lagged �rm size. Pointwise-
consistent estimates of compensation, wnt, can be obtained for each observation with Kernel
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estimators of successive cross sections. From our estimates of wnt, we then construct a
consistent estimator of the gross abnormal return, which we denote

x
(N)
nt � exnt + w

(N)
nt =Vn;t�1: (A-34)

E.4 Estimation

In the PMH2, PMH3, HMH models, the components of Q2 (e
), Q3 (e
), QH (e
) are formed
from the probability density functions characterizing abnormal returns� conditional on the
�rm�s characteristics, z, and the manager�s report� , fr(x; z), and the nonlinear regression
function of compensation on abnormal returns and the same set of variables, denoted by
wrt(x; z). Below we described our estimates of the compensation scheme, w(N)rt (x; z), the
probability densities, f (N)r (x; z), and the probabilities, '(N)s (z). From these estimated func-
tions, we directly form the estimated weighted ratio h(N)(x; z). Our structural analysis inputs

vectors of the form
�
w
(N)
nt ; x

(N)
nt ; rnt; znt; Vn;t�1

�
, and the subsampling methods we use to ob-

tain test statistics compute the vectors in each subsample. Denote by fr(x; z) the conditional
density of abnormal returns x given the true state s and the �rm�s characteristics z.

Compensation schedules We estimate wor(x; z) with the nonparametric kernel regres-
sion:

w
(N)
nrt (x; z) =

PN
m=1 Ifrmt = r; zmt = zgK

�
x�exmt
&1N

; Vn;t�1�Vm;t�1
&2N

� ewntPN
m=1 Ifrmt = r; zmt = zgK

�
x�exmt
&1N

; Vn;t�1�Vm;t�1
&2N

� ; (A-35)

where K
�
x�exmt
&1N

; Vn;t�1�Vm;t�1
&2N

�
is a bivariate kernel, &1N and &2N are the bandwidths associ-

ated with x and Vn;t�1 respectively, and Ifrmt = r; zmt = zg is an indicator function that
takes the value one if rnt = r for �rm type z and zero otherwise.

Probability densities We use the simple frequency estimator of 'r(z) de�ned by

'
(N)
1 (z) = (TN)�1

TP
t=1

NP
n=1

Ifrnt = 1; znt = zg: (A-36)

The probability density, fr(x; z), is nonparametrically estimated by

f (N)r (x; z) =

PT
t=1

PN
n=1 Ifrnt = 1; znt = zgK1

�
x�x(N)nt

&3N

�
&3N

PT
t=1

PN
n=1 Ifrnt = 1; znt = zgg

; (A-37)

where K1

�
x�xnt
&3N

�
is the kernel &3N is the bandwidth associated with x, and x

(N)
nt is formed

by substituting w(N)nrt (x; z) into Equation (A-34). In the HMH model, h(x; z) is estimated by

h(N)(x; z) � (1� '
(N)
1 (z))f

(N)
2 (x; z)='

(N)
1 (z)f

(N)
1 (x; z): (A-38)
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Boundary conditions We also require an estimate of wrt to form estimates of vrt(
) �
exp [�e
wrt=bt+1]. However, in the presence of measurement error, the simple boundary
estimator used in the body of the paper may not be consistent. We use the fact that although
wrt is unknown, wrt(x) is a locally nondecreasing function in x in the limit as x ! 1, to
de�ne an alternative boundary estimator that is robust to the presence of measurement error
in observed compensation. Following Brunk (1958), given �rm type, for each state r 2 f1; 2g
and period t 2 f1; : : : ; Tg, we rank the observations on returns in decreasing order by x(1)rt ,
x
(2)
rt ; : : : and so on, denoting by w

(1)
rt , w

(2)
rt ; : : : the corresponding (estimated) compensations.

Letting wt(q) correspond to the qth highest value of wnt within the subset of data formed
from observations for which rnt = r; we estimate wrt with:

w
(N)
rt (z) � max

q

h
q�1
PN

n=1 I fwnt � wt(q)g I frnt = r; znt = zg
i

(A-39)

for each state r 2 f1; 2g:
Finally, we require estimates of gs(x; z), which we denote by g

(N)
s (
; x; z). Note from

Theorem 3.1 in the main text that g(N)2 (
; x; z) can be directly found from w
(N)
st , but that

g
(N)
1 (
; x; z) also requires an estimate of h(z). L�Hospital�s rule yields

h(z) =
'2(z)

'1(z)

�
lim
x!1

�
f2(x; z)

f1(x; z)

��
=
'2(z)

'1(z)

�
lim
x!1

�
1� F2(x; z)

1� F1(x; z)

��
:

Ranking excess returns realized in the �rst state achieved at the end of any period t 2
f1; : : : ; Tg, we obtain the decreasing sequence x(1), x(2); : : :. Again following Brunk (1958),
we estimate h(z) with

h
(N)
(z) � max

q

"
q�1

TX
t=1

NX
n=1

1
n
x
(N)
nt � x(q)

o
1
n
r
(N)
nt = 2; znt = z

o#
: (A-40)

E.5 Construction of Con�dence Intervals

To impose the restrictions embodied in the dynamic version of PMH2 and PMH3 models, we
form nonparametric estimators Q(N)st (e
) and �(N)jt (e
) for Qst (e
) and �jt (e
) from estimates

of their components. From our estimates of the compensation scheme, w(N)rt (x; z), maximum
compensation, w(N)st , and the probability densities, f

(N)
r (x; z) we directly form the estimated

Q
(N)
st (e
), and �(N)jt (e
) for j 2 f1; 2g using the de�nitions of �jt (e
) given in the previous

section for �rm type z. De�ning the sample analogue to Q2 (e
) and Q3 (e
) as
Q
(N)
2 (e
) = TX

t=1

2X
s=1

�
min

n
0; Q

(N)
st (e
)o2 +�(N)jst (e
)2� (A-41)

and

Q
(N)
3 (e
) = TX

t=1

2X
s=1

�
min

n
0; Q

(N)
st (e
)o2� :
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To impose the restrictions embodied in the dynamic version of the HMH, we form non-
parametric estimators 	(N)jt (e
) and �(N)kt (e
) for 	jt (e
) and �kt (e
) from estimates of their

components. From our estimates of the compensation scheme, w(N)st (x), the probability den-
sities, f (N)s (x), and the probabilities, '(N)s , we directly form the estimated weighted ratio,
h(N)(x; z), Q(N)st (e
), and 	(N)jt (e
) for j 2 f1; 2; 5g using the de�nitions of 	jt (e
) given in the
previous section. In addition to w(N)st , we also require an estimate of h(z) and h

(N)
which we

obtain using the estimators described above. We de�ne the sample analogue to QH (e
) as
Q
(N)
H (e
) � TX

t=1

9X
j=5

min
h
0;	

(N)
jt (e
)i2 + TX

t=1

7X
j=6

[	
(N)
5t (e
)	(N)jt (e
)]2

+
TX
t=1

	
(N)
4t (e
)2 + TX

t=1

[	
(N)
6t (e
)	(N)8t (e
)]2 + TX

t=1

5X
k=3

min
h
0;�

(N)
kt (e
)i2 : (A-42)

Given appropriate regularity conditions, the law of large numbers implies Q(N)st (
), �(N)jt (e
),
	
(N)
jt (e
), and �(N)kt (e
) converges to their population counterparts, and we denote their rate

of convergence by Na. Let �(N)2� , �
(N)
3� , and �

(N)
H� denote the set of risk-aversion parameters

that asymptotically cover the observationally equivalent sets of e
 > 0 under the three models
with probability 1� �: Let c(N)2� , c

(N)
3� , c

(N)
H� denote a consistent estimators for c2�, c3�, and cH�

respectively, critical values associated with tests of size �; and de�ne �(N)2� ; �
(N)
3� , and �

(N)
H� as

�
(N)
2� �

ne
 > 0 : Q(N)2 (e
) � c
(N)
2�

o
; (A-43)

�
(N)
3� �

ne
 > 0 : Q(N)3 (e
) � c
(N)
3�

o
; (A-44)

and
�
(N)
H� �

ne
 > 0 : Q(N)H (e
) � c
(N)
H�

o
: (A-45)

Then �(N)2� , �
(N)
3� , and �

(N)
H� are a consistent estimators of the identi�ed sets �2; �3, and �H.

E.5.1 Rate of convergence

We now derive the rate of convergence and numerically compute the critical value using the
subsampling procedure of Chernozhukov, Tamer and Hong (2007). The rates of convergence
and the asymptotic distributions of Q(N)st (
), �(N)jt (e
), 	(N)jt (e
), and �(N)kt are determined
by their most slowly converging components. The regularity condition about the upper
bound xr plays a role in determining the rate of convergence of w(N)r to wr; which is in turn
determines the rate of convergence of Q(N)st (
), �(N)jt (e
), 	(N)jt (e
), and �(N)kt : Suppose there
exists a �nite xr such that Fr (xr; z) < 1 and if x > xr; then gr (x; z) = 0. In that case the
derivative of wrt (x; z) at xr is zero, and following Parsons (1978), w(N)r converges to wr at

N1=2: Appealing to Parsons (1978), h
(N)
(z) converges at rate N1=2 to h(z) under condition

stated in Equation (28) in main text. Although w(N)r (x; z) and f (N)r (x; z) converge pointwise
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more slowly than N1=2, the results in Newey and McFadden (1994) imply, for a given e
 > 0,
then Q(N)st (
), �(N)jt (e
), 	(N)jt (e
), and and �(N)kt are asymptotic normal with

p
N convergence

rate.
Alternatively, we can relax the assumption about the existence of a �nite xr; and assume

less restrictively, that lim
x!1

gr (x; z) = 0: Then as Wright (1981) shows, w(N)r converges to wr

at rate N1=3; and N1=3 is now the convergence rate. Although the regularity assumption
about xr does not a¤ect the estimation of the model or the identi�cation results, it a¤ects
the convergence rate of the estimates, and the formula for variance-covariance matrix. As a
practical matter we adopt the weaker assumption in our empirical work.

E.5.2 Subsampling Procedure

Below we give a brief summary of the subsampling procedure used. So, consider all subsets
of the data with size Nb < N , where Nb �!1, but Nb=N �! 0, and denote the number of
subsets by BN . De�ne cj0 and �

(N)
j0 for j = f2; 3;Hg as

c
j0 � infe
>e
N

h
N1=3Q

(N)
j (
)

i
+ �N

�
(N)
j0 � f
 � 
N : N

1=3Q
(N)
j (
) � cj0g;

where �N / lnN and 
N , a strictly positive sequence, converges to zero at a rate faster than
Na. For each subset i 2 f1; :::; BNg of size Nb de�ne

C
(i;Nb)
j � sup


2�(N)j0

h
(Nb)

1=3Q
(i;Nb)
j (
)

i
;

and denote by c(N)j� the ��quantile of the sample
�
C(1;Nb); : : : ; C(BN ;Nb)

	
.

E.6 Estimation of Welfare Measures

The expected gross output loss to the �rm for switching from the distribution of abnormal
returns for working to the distribution for shirking is de�ned as:

4j
1(z; e
) = 2X

r=1

'r(z)

Z
x(1� gr(x; z; e
))fr(x; z)dx (A-46)

for j = f3; Hg for the PMH3 and HMH models respectively. For the PMH3 model gr(x; z; e
)
is given by:

gr(x; z; e
) � ee
=bt+1wrt+1(z) � ee
=bt+1wort+1(x;z)
ee
=bt+1wrt+1(z) � E

�
ee
=bt+1wort+1(x;z)jz� (A-47)
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for for each reported state r = 1; 2. In the HMH model we de�ne vrt(x; z; e
) � ee
=bt+1wort+1(x;z)
and vrt(z; e
) � supx �ee
=bt+1wort+1(x;z)� then g2(x; z; e
) is given by

g2(x; z; e
) � v2t(z; e
)�1 � v2t(x; z; e
)�1
v2t(z; e
)�1 � E2 [v2t(x; z; e
)�1] ; (A-48)

and g1(x; z; e
) is sequentially de�ned as:
g1(x; z; e
) � v1t(z; e
)�1 � v1t(x; z; e
)�1 + �3(z; e
) �h(z)� h(x; z)

�
� �4(z; e
)g2(x; z; e
)h(x; z) b�1(z;e
)b�2(z;e
)

�1(z; e
)
(A-49)

where:

�4(z; e
) � E1[v1t(x;z;e
)jz]
E[vrt(x;z;e
)jz] � 1� E1 [v1t(x; z; e
)h(x; z)jz]�E2 [v2t(x; z; e
)jz]�1 � E [vrt(x; z; e
)jz]�1	b�1(z;e
)b�2(z;e
)E1 [v1t(x; z; e
)g2(x; z; e
)h(x; z)jz]� E1 [v1t(x; z; e
)h(x; z)jz]

(A-50)

�3(z; e
) � E2 [v2t(x; z; e
)jz]�1 � �4(z; e
)� E [vrt(x; z; e
)jz]�1 (A-51)

�1(z; e
) � b�1(z; e
)b�2(z; e
) �v1t(z; e
)� E [vrt(x; z; e
)jz]�1 + �3(z; e
)h(z)	 (A-52)

b�2(z; e
) � "Z 2X
s=1

'svst(x; z; e
)fs(x; z)dx
#�1

(A-53)

b�1(z; e
) � b�2(z; e
)�v2t(z; e
)�1 � E2 [v2t(x; z; e
)�1jz]
v2t(z; e
)�1 � E2 [v2t(x; z; e
)jz]�1

�
: (A-54)

The manager�s compensating di¤erential from shirking versus working, 4j
2(z; e
), is de�ned

as the di¤erence between the certainty equivalent wages for working and shirking. It is given
by:

4j
2(z; e
) = w

(2)
j (z; e
)� w

(1)
j (z; e
) (A-55)

for j = f3;Hg for the PMH3 and HMH models respectively. For the PMH3 model w(1)j (z; e
)
is given by:

w
(1)
3r (z; e
) = bt+1e
bt lnfEr �e�e
=bt+1wort+1(x;z)jz��1g (A-56)

for each reported state r = f1; 2g and for the HMH model:

w
(1)
H (z; e
) = bt+1e
bt ln

8<:
"Z 2X

s=1

'svst(x; z; e
)fs(x; z)dx
#�19=; : (A-57)

For the PMH3 model w(2)j (z; e
) is given by:
w
(2)
3r (z; e
) = bt+1e
bt ln

 
1� Er

�
ee
=bt+1wort+1(x;z)�e
=bt+1wrt+1(z)jz�

Er
�
e�e
=bt+1wort+1(x;z)jz�� ee
=bt+1wrt+1(z)

!
(A-58)
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for each reported state r = f1; 2g and for the HMH model:

w
(2)
H (z; e
) = bt+1e
bt ln

�
v2t(z; e
)�1 � E2 [v2t(x; z; e
)�1jz]

E[vrt(x; z; e
)jz]fv2t(z; e
)�1 � E2 [v2t(x; z; e
)jz]�1g
�
: (A-59)

Finally the the risk premium from agency, 4j
3(z; e
); is given by:

4j
3(z; e
) =

(
E[wort+1(x; z)jz]�

P2
r=1 'rw

(2)
3r (z; e
) for j = 3

E[wort+1(x; z)jz]� w
(2)
H (z; e
) for j = H

(A-60)

for j = f3;Hg for the PMH3 and HMH models respectively. Using the above formula
we calculate the con�dence interval using the empirical counterpart of wort+1(x; z), wrt+1(z),
fr(x; z), 'r, h(x; z), and h(z) estimated in Section E.4 from the estimated con�dence interval
for e
.
F Proofs

Proof of Lemma A.1. Let �t0 be the date-t price of a contingent claim made on a
consumption unit at date t0, implying the bond price is de�ned as

bt � Et

" 1X
t0=t

�t0

#
;

and let qt denote the date-t price of a security that pays o¤ the random quantity

qt � Et

" 1X
t0=t

�t0 (ln�t0 � t0 ln �)

#
:

From Equation (15) on page 680 of Margiotta and Miller (2000), the value to a manager
with current wealth endowment ent of announcing state rt(s) in period t when the true state
is s and choosing e¤ort level lst2 in anticipation of compensation wrt(s)t(x) at the beginning
of period t+ 1 when he retires one period later is

�bte�1=bt2

�
E

�
exp

�
�
e
wrt(s)t(x)

bt+1

���1�1=bt
exp

�
�qt + e
ent

bt+1

�
:

The corresponding value from choosing e¤ort level lst1 is

�bte�1=bt1

�
Et

�
exp

�
�
e
wrt(s)t(x)

bt+1

�
[gs(x)]

��1�1=bt
exp

�
�qt + e
ent

bt+1

�
;

whereas from their Equation (8) on page 678, the value from retiring immediately is

�bt exp
�
�qt + e
ent

bt+1

�
:
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Dividing each expression through by the retirement utility, it immediately follows that the
manager chooses lst � (lt0; lst1; lst2) to minimize the negative of expected utility:

lt0 + (e�1lst1 + e�2lst2)1=bt �E �exp��e
wrt(s)t(x)
bt+1

�
[gs(x)lst1 + lst2]

��1�1=bt
= lt0 +

�
(e�1lst1 + e�2lst2)1=(bt�1)Et �exp��e
wrt(s)t(x)

bt+1

�
[gs(x)lst1 + lst2]

��(bt�1)=bt
:

Since lt0 2 f0; 1g and bt > 1, the solution to this optimization problem also solves

lt0 + (e�1lst1 + e�2lst2)1=(bt�1)Et �exp��e
wrt(s)t(x)
bt+1

�
[gs(x)lst1 + lst2]

�
:

Multiplying through by the factor (e�1lst1 + e�2lst2)1=(bt�1) and summing over the two states
s 2 f1; 2g yields the minimand in Lemma A.1.

Proof of Lemma A.2. In our model, the proof of Proposition 5 in Margiotta and
Miller (2000) can be simply adapted to show that Theorem 3 of Fudenberg, Holmstrom
and Milgrom (1990) applies, thus demonstrating that the long-term optimal contract can
be sequentially implemented. An induction completes the proof by establishing that the
sequential contract implementing the optimal long-term contract for a manager who will
retire in � periods replicates the one-period optimal contract. In the optimal short-term
contract, the participation constraint is satis�ed with strict equality, which implies that at
the beginning of period � � 1 the expected lifetime utility of the manager is determined by
setting t = � � 1 in the equation

�bt exp
�
�at + e
et

bt

�
: (A-61)

Suppose that at the beginning of all periods t 2 f� + 1; � + 2; : : : ; � � 1g; the expected
lifetime utility of the manager is given by Equation (A-61). We �rst show the expected
lifetime utility of the manager at � is also given by Equation (A-61). From Lemma 3.1 in the
main text, the problem shareholders solve at � is identical to the short-term optimization
problem solved in the text. In the solution to each cost-minimization subproblem for the four
(L1t; L2t) choices, the manager�s participation constraint is met with equality. Consequently,
the manager achieves the expected lifetime utility given by Equation (A-61), as claimed.
Therefore the problem of participating at time � and possibly continuing with the �rm for
more than one period reduces to the problem of participating at time � for one period at
most, solved in Lemma A.1. The induction step now follows.

Proof of Theorem E.1. For notational convenience, and without loss of generality, we
suppress the dependence of compensation wnt on (snt; bt; bt+1). Let ex denote the net excess
returns, x gross excess returns, w(x) the compensation schedule as a mapping from gross
excess returns, and V the value of the �rm at the beginning of the period. By our de�nition
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of net and gross excess returns, ex = x� w(x)=V: (A-62)

Suppose there exists for some (ex0; V0), two distinct values of net excess returns, denoting
x1 2 R and x2 2 R, satisfying Equation (A-62). Then,

ex0 = xi � w (xi) =V0

for i 2 f1; 2g which implies

V0 (x2 � x1) = w (x2)� w (x1) :

But this possibility is ruled out in the theorem�s premise. Therefore, a unique solution to
the relation de�ned by Equation (A-62) exists for each pair (ex; V ), and we can denote the
solution mapping by x � X (ex; V ). Substituting X (ex; V ) for x in w (x), we de�ne � (ex; V ) �
w [X (ex; V )]. The theorem now follows because the measurement error on compensation is
assumed to be independent of (ex; V ), so E [ ew jex; V ] = � (ex; V ).
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